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13.1 INTRODUCTION

In much of ecology, abundance (N ) is the most interesting state variable
when analyzing a population. Abundance is usually estimated from
capture–recapture data or counts using the methods in Chapters 6, 10 or
12, or else strong assumptions are made about the count-abundance rela-
tionship. However, sometimes we do not have counts but only less infor-
mation-rich data of the detection/nondetection kind (also misleadingly
called presence/absence data). These are binary data indicating whether
a species is detected (1) or not (0) at a site. We may then want to charac-
terize one or several sites using occupancy: the probability that a site is
occupied, that is, that local abundance is greater than zero. Often, occu-
pancy is not of direct interest and merely a proxy for abundance, in
which one is really interested. Indeed, it is often hard to think about occu-
pancy separately from the abundance at the occupied sites.

However, there are also important fields in ecology that do focus on
occupancy rather than abundance. Outstanding examples include meta-
population ecology (Hanski, 1994, 1998), niche and species distribution
(Guisan and Thuiller, 2005), and disease modeling (Thompson, 2007;
McClintock et al., 2010). In addition, there is a sense in which, at a
small spatial scale, occupancy and abundance coincide; when a site is
chosen so small that at most one individual or pair can occupy it. The
spotted owl data set in MacKenzie et al. (2003) and our Section 13.5.1
provide examples for this. A similar example is given by Bled et al.
(2011a), who studied the habitat selection of kittiwakes in breeding cliffs.
Here, a potential nest site is a straightforward site definition, and it can
be occupied by two birds at most.

This chapter deals with a class of hierarchical models known as “site-
occupancy models”. In the statistical literature, these models are also
called zero-inflated binomial models. In the context of distribution
modeling in ecology, they have been introduced independently by
MacKenzie et al. (2003) and Tyre et al. (2003), though they have impor-
tant roots in earlier approaches as summarized in MacKenzie et al.
(2006). “Site-occupancy model” is a fairly uninformative name for this
extremely flexible modeling framework. We believe that this has helped
to hide its usefulness for inference about any kind of occurrence
(“presence/absence”) data at discrete sites. Essentially, site-occupancy
models are hierarchical logistic regression models that jointly model
the probability of occupancy and detection in animals or plants.

As usual, we believe that a hierarchical view of occurrence data is impor-
tant to properly separate the ecological component and the observation
component that combine to produce the observed data. However, this
has not been a widely-held opinion in ecology so far. For instance, in
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classical species distributionmodeling (e.g., Guisan and Thuiller, 2005), it is
typically ignored what is actually being modeled: it is not the distribution
of a species. Rather, it is the apparent species distribution (unless detection
probability is estimated). The apparent distribution is a function of both
the true species distribution and of the detection probability of the species
(Kéry and Schmidt, 2008; Kéry et al., 2010a; Kéry, 2011b).

There are three concerns when apparent instead of true distribution is
modeled:

1. The extent of species distributions will be underestimated when p< 1,
2. Estimates of covariate relationships will be biased towards zero when

p< 1,
3. Factors that affect the difficulty with which a species is found may

end up in predictive models of species occurrence or may mask factors
that do affect species occurrence.

The first is intuitively clear: if a species is not found at all sites where
it occurs, the perceived range will be smaller than the actual range.
However, the second is not so intuitive, especially perhaps, because it
seems to be different from the modeling of abundance when detection
probability is ignored. Yet, this effect has been demonstrated very clearly
by Tyre et al. (2003) and in the next section, we conduct a little simulation
to illustrate it. Finally, as an example of the third effect, assume that a spe-
cies is more detectable in habitat A than in habitat B, for instance, because
habitat A is more open and B is more wooded. In this case, open habitat
may be identified as a factor that positively affects the occupancy
probability/distribution of the species. For an example of the converse,
see Section 13.3.2.

As always, to account for imperfect detection, extra data about the
observation process are required. This means temporally replicated
“presence/absence” observations, where the pattern of detection/
nondetection at a site contains the information about the observation
process. We note that spatial replication at a small scale is informative
about detection probability as well (Nichols et al., 1998a, 1998b; Kendall
and White, 2009; Hines et al., 2010), but we focus on temporal replication
here. Site-occupancy models require data collected in a metapopulation
design (Royle, 2004c; Kéry and Royle, 2010), where (temporally or
small-scale spatially) replicated detection/nondetection observations are
available for a number of spatial replicates (for instance, > 20). As in
Chapter 12, analyzing such a data set does not mean to imply that it
represents a metapopulation in the ecological sense of the term.

In the simplest case, we consider detection/nondetection observation
yi,j at site i during survey j: yi,j takes on a value of 1 when a species is
detected at site i on survey j and value of 0 when it is not detected.
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It is useful to consider the genesis of all species distribution or
metapopulation data as a combination of two processes: one (ecological)
process determines whether a site is occupied or not and the other
(observation) process determines whether the species is found or not,
given that a site is occupied. Correspondingly, in a site-occupancy
model, we formally distinguish between a first submodel for the partly
observed true state (occurrence, the result of the ecological process) and
second submodel for the actual observations. The actual observations
result from both the particular realization of the ecological process and
of the observation process.

We naturally model true occurrence zi (zi= 1, if site i is occupied; zi= 0 if
site i is not occupied) as a Bernoulli random variable governed by the para-
meter ψ (occupancy probability); ψ is the parameter that distribution mode-
lers would wish they were modeling but only do so when detection is perfect
or detection probability can be estimated. (Note that we denote probability
of occupancy by ψ and the latent occurrence state of a site as z.) However, zi
is not what we usually get to see; instead, our actual observations, yi,j, detec-
tion or not at site i during survey j (or “presence/absence” datum yi,j), are
another Bernoulli random variable with a success rate that is the product of
the actual occurrence at site i, zi, and detection probability p at site i during
survey j. At a site where a study species does not occur, z equals 0, and y
must be 0, unless there are false-positive errors. Conversely, at an occupied
site, we have z= 1, and the species is detected with probability p. That is, in
the site-occupancy model, detection probability is expressed conditional on
actual occurrence, and the two parameters ψ and p are separately estimable
if replicate visits are available. We could call this model a Bernoulli-Bernoulli
mixture model. Moreover, recognizing that the modeling of the latent occur-
rence (z) in the first level of the hierarchy accommodates additional zeroes in
the data set (beyond those coming from the Bernoulli observation process),
we see that it is also zero-inflated binomial (ZIB) model.

We have claimed that the term “presence/absence” for data yi,j is mis-
leading. The preceding equations clarify why this is so: yi,j is a function of
two processes, and only one of them has to do with occurrence and the
other one is a nuisance process owing to the imperfect nature of the obser-
vation process. The true presence/absence data are the zi, and they are only
imperfectly observed and therefore latent: z = 1 can be observed as y = 0 or
as y = 1. Site-occupancy models allow one to make a formal distinction
between the two latter cases.

Two important assumptions of the model are closure and lack of false-
positive errors. Closure in the context of the site-occupancy model means

zi ~ Bernoulli(ψ) 1. Ecological process yields true state

yi,j|zi ~ Bernoulli(zip) 2. Observation process yields observations
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that over the duration of surveys, the occurrence state of a site must not
change. Each site is either occupied or it is not, but there is no extinction or
colonization. This sounds like a rather strong assumption; however, it is
not always that problematic. Lack of closure is akin to temporary emigra-
tion (see Chapter 9), so if temporary emigration is random, it will be con-
founded with detection probability. This means that temporary (but not
permanent) absence of a species from a site will be one component of
imperfect detection. Consequently, the estimate of the occupancy para-
meter will describe the proportion of sites ever occupied or used during
the study period, rather than of sites that are permanently occupied, as it
would in the absence of temporary emigration. If there is colonization/
extinction, for instance when surveys are spread over several years, we
could simply model occupancy separately for each period of closure, as
we did for the open-population binomial mixture model in Section 12.3.
Alternatively, we can use the dynamic occupancy model described in
Section 13.5, which expresses changes in occurrence over multiple
“seasons” as a function of colonization and extinction.

Absence of false positives means that no other species must be mista-
kenly identified as our focal species, or more generally, we must be sure
that a 1 really means that our focal species was present. False positives
can seriously bias occupancy estimates (Royle and Link, 2006); hence,
they should be avoided for instance by good training of field personnel
or by discarding doubtful records. If we discard doubtful sightings that
in reality refer to our focal species, we simply lower detection probability
but do not incur biased estimators. However, our models are able to deal
with imperfect detection very well. When different kinds of occupancy
data are available and false positives can be excluded for at least one of
them, multistate occupancy models (see Section 13.6) can be used to
account for both false negatives and for false positives (Miller et al.,
2011).

One way to look at site-occupancy models is as a hierarchical, coupled
logistic regression. One logistic regression describes true occurrence, and
the other describes detection, given that the species occurs. Remember that
conventional methods for distribution modeling (GLM, GAM, boosted
regression trees: Elith et al., 2008; Maxent: Phillips and Dudik, 2008)
would pool the temporal replicates j and model the maximal observation,
that is, site i will get a value of 1 if the species was ever detected there.
Those approaches discard the information available about the observation
process and thus in principle cannot model true, but only apparent species
distributions (Kéry et al., 2010a). In contrast, site-occupancy models
exploit all the available information about both ecological and observation
process contained in detection/nondetection data.

The two Bernoulli distributions above describe the simplest possible site-
occupancy model, where both occupancy (ψ) and detection probability (p)
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are constant (see Section 13.3.1). This simple model can be extended in
many ways. Most importantly, we need to be able to model the effects of
measured covariates on one or both parameter(s). Both the ecological and
the observation processes represent a logistic regression (with an intercept
only so far), so it is natural to include covariate effects via a logit link func-
tion. Hence, we can add statements of the following kind to the model
description

logitðψ iÞ= α+ β � xi:
Here, xi is the value of some occurrence-relevant covariate measured at

site i, and α and β are the intercept and slope parameters of this logit-linear
regression. We can do the same for the observation model, where we
distinguish between “site covariates” and “sampling covariates”. Site cov-
ariates vary among sites only and are constant across repeated surveys to a
site, that is, they will be indexed by i only. In contrast, survey covariates
vary by site and by survey; hence, they will be indexed by i and j. This is
a minor distinction but in practice, the modeling of sampling covariates
requires a little more book-keeping effort. Explicitly couching site-
occupancy models within the GLM framework makes it clear that other
GLM extensions might be applied, too. For instance, overdispersion in
detection probability could be modeled by the introduction of random
site effects (Royle, 2006). Of course, we could model the effects of many
explanatory variables, of polynomial terms, or of splines (Gimenez et al.,
2006a, b; Collier et al., 2011).

In Section 13.2, we conduct a simulation to understand what happens
to the estimates of regression coefficients in conventional species distri-
bution models when detection probability is not perfect. In Section 13.3,
we analyze simulated data sets and in Section 13.4 a real data set using
single-season site-occupancy models. In Section 13.5, we extend the
model to multiple “seasons” and thus arrive at an extended metapopula-
tion model. In Section 13.6, we extend the single-season model to multiple
states of occurrence, which in our example are owl territories occupied
with or without reproduction.

We emphasize that we will not conduct any goodness-of-fit assess-
ments based on posterior predictive checks in this chapter. The reason
for this is that with a binary response, the deviance or other discrepancy
measures based directly on the response are uninformative about the fit of
a model (McCullagh and Nelder, 1989). Kéry (2010) erroneously showed
such posterior predictive checks for site-occupancy models. These checks
are meaningless because regardless of the model structure, they will
always and thus sometimes spuriously indicate a fitting model. To do a
goodness-of-fit test, the binary responses have to be aggregated.
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13.2 WHAT HAPPENS WHEN p< 1 AND CONSTANT
AND p IS NOT ACCOUNTED FOR IN A SPECIES

DISTRIBUTION MODEL?

We use simulation to understand what happens when there is a constant
degree of imperfect detection and this is not accounted for in an analysis.
We simulate 100,000 data sets from 250 sites, with a constant p< 1 (here,
p = 0.60), and analyze them with a conventional species distribution
model (here, a nonhierarchical logistic regression). We have a single expla-
natory variable (think of it as a habitat or environmental covariate) that links
the habitat to occurrence probability on the logit-linear scale with intercept
−3 and slope 1. (You may want to change nreps in the code to 1000.)

nreps <- 10^5 # No. replicates
estimates <- array(NA, dim = c(nreps, 2)) # Array to contain the

estimates
R <- 250 # No. sites

for (i in 1:nreps) {
cat(i, "\n"); flush.console()
x <- runif(R, 0, 10) # choose covariate values
state<-rbinom(n=R, size=1, prob=plogis(-3 + 1 * x)) # Occ. state
obs <- rbinom(n = R, size = 1, prob = 0.6) * state # Observations
fm <- glm(obs~x, family = binomial)
estimates[i,] <- fm$coef
}

par(mfrow = c(3, 1))
hist(estimates[,1], col = "gray", nclass = 50, main = "",

xlab = "Intercept estimates", las = 1, ylab = "", freq = FALSE)
abline(v = −3, col = "red", lwd = 3) # Truth
hist(estimates[,2], col = "gray", nclass = 50, main = "", xlab = "Slope

estimates", xlim = c(0,1), las = 1, ylab = "", freq = FALSE)
abline(v = 1, col = "red", lwd = 3) # Truth

plot(1:10, plogis(estimates[1,1] + estimates[1,2] * (1:10)), col =
"gray", lwd = 1, ylab = "Occupancy probability", xlab = "Covariate
value", type = "l", ylim = c(0, 1), frame.plot = FALSE, las = 1)

samp <- sample(1:nreps, 1000)
for (i in samp){

lines(1:10, plogis(estimates[i,1] + estimates[i,2] * (1:10)),
col = "gray", lwd = 1, type = "l")

}
lines(1:10, plogis(–3 + 1 * (1:10)), col = "red", lwd = 3, type = "l")

When failing to account for a constant nondetection error, slope esti-
mates of a covariate are biased towards zero (Fig. 13.1, middle panel).
The intercept (Fig. 13.1, top panel) is not necessarily estimated too low;
rather, here, it is overestimated. However, the combined effect is such
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that the total extent of a distribution is underestimated. The latter is repre-
sented by the area under the red curve in the bottom panel. The area
under the gray curves (the estimated distribution) is always less than
the area under the red curve (true distribution).

13.3 GENERATION AND ANALYSIS OF SIMULATED
DATA FOR SINGLE-SEASON OCCUPANCY

13.3.1 The Simplest Possible Site-Occupancy Model

To fully grasp how the site-occupancy model “works”, we first look at
the simplest possible case: both the ecological and the observation process
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FIGURE 13.1 Effect of imperfect detection on a conventional species distribution model:
slope estimates become biased low with imperfect detection even if detection probability is
constant (here, 0.60). In the bottom panel, the red lines show the truth and the gray lines show
a random sample of 1000 estimated regression lines: the extent of the distribution is always
underestimated. See also Tyre et al. (2003).
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are described by an intercept only. To generate detection/nondetection
data yi,j under this Null model for R = 200 spatial replicates (sites) and
T = 3 temporal replicates, we simply do this.

# Select sample sizes (spatial and temporal replication)
R <- 200
T <- 3

# Determine process parameters
psi <- 0.8 # Occupancy probability
p <- 0.5 # Detection probability

# Create structure to contain counts
y <- matrix(NA, nrow = R, ncol = T)

# Ecological process: Sample true occurrence (z, yes/no) from a
Bernoulli (occurrence probability = psi)

z <- rbinom(n = R, size = 1, prob = psi) # Latent occurrence state

# Observation process: Sample detection/nondetection observations
from a Bernoulli(with p) if z=1

for (j in 1:T){
y[,j] <- rbinom(n = R, size = 1, prob = z * p)
}

# Look at truth and at our imperfect observations
sum(z) # Realized occupancy among 200 surveyed sites
[1] 169
sum(apply(y, 1, max)) # Observed occupancy
[1] 151

Note that in the simulation of the observation process, we have multi-
plied the Bernoulli draw with z. This means that the result will be zero
whenever z = 0, that is, whenever the species does not occur. Next, we
analyze this data set.

# Specify model in BUGS language
sink("model.txt")
cat("
model {

# Priors
psi ~ dunif(0, 1)
p ~ dunif(0, 1)

# Likelihood
# Ecological model for true occurrence
for (i in 1:R) {

z[i] ~ dbern(psi)
p.eff[i] <- z[i] * p

# Observation model for replicated detection/nondetection
observations

for (j in 1:T) {
y[i,j] ~ dbern(p.eff[i])
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} #j
} #i

# Derived quantities
occ.fs <- sum(z[]) # Number of occupied sites among the 200
}
",fill = TRUE)
sink()

# Bundle data
win.data <- list(y = y, R = nrow(y), T = ncol(y))

# Initial values
zst <- apply(y, 1, max) # Observed occurrence as starting values for z
inits <- function() list(z = zst)

# Parameters monitored
params <- c("psi", "p", "occ.fs")

# MCMC settings
ni <- 1200
nt <- 2
nb <- 200
nc <- 3

# Call WinBUGS from R (BRT < 1 min)
out <- bugs(win.data, inits, params, "model.txt", n.chains = nc,

n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory =
bugs.dir, working.directory = getwd())

# Summarize posteriors
print(out, dig = 2)
[...]

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

psi 0.89 0.04 0.80 0.86 0.89 0.92 0.97 1.01 340

p 0.47 0.03 0.41 0.45 0.47 0.49 0.53 1.00 870

occ.fs 178.29 7.59 165.00 173.00 178.00 183.00 195.00 1.01 510

deviance 739.37 28.50 686.50 719.00 738.20 758.05 798.75 1.01 470

[...]

This looks good. You will note quite a bit of sampling variability in this
system. The estimates may be fairly different among repeated generations
of the data set or among the replicate data sets of different people. This
basic model is a good starting point for running simulation exercises to
find out about how good inferences can be in marginal data situations;
see exercises and Guillera-Arroita et al. (2010).

13.3.2 Site-Occupancy Models with Covariates

Next, we look into the case where covariates affect the ecological and
the observation process. We model covariate effects on a parameter θ
through the canonical GLM link function, the logit = log(θ/(1− θ). As in
the previous chapter, we will look at a worst-case scenario for a species
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distribution model, where opposing effects of a single covariate on the two
processes generating the observed data effectively cancel each other out in
the observations. The result will be that in a conventional species distribu-
tion model, the effect of this covariate on the species distribution will not
be identified correctly. We next define a function that creates species dis-
tribution data (detection/nondetection data) for us.

# Define function for generating species distribution data
data.fn <- function(R = 200, T = 3, xmin = −1, xmax = 1, alpha.psi = −1,

beta.psi = 3, alpha.p = 1, beta.p = −3) {

y <- array(dim = c(R, T)) # Array for counts

# Ecological process
# Covariate values
X <- sort(runif(n = R, min = xmin, max = xmax))

# Relationship expected occurrence – covariate
psi <- plogis(alpha.psi + beta.psi * X) # Apply inverse logit

# Add Bernoulli noise: draw occurrence indicator z from
Bernoulli(psi)

z <- rbinom(n = R, size = 1, prob = psi)

occ.fs <- sum(z) # Finite-sample occupancy (see
Royle and Kéry, 2007)

# Observation process
# Relationship detection prob – covariate
p <- plogis(alpha.p + beta.p * X)

# Make a 'census'
p.eff <- z * p
for (i in 1:T){

y[,i] <- rbinom(n = R, size = 1, prob = p.eff)
}

# Naïve regression
naive.pred <- plogis(predict(glm(apply(y, 1, max) ~ X + I(X^2),

family = binomial)))

# Plot features of the simulated system
par(mfrow = c(2, 2))
plot(X, psi, main = "Expected occurrence", xlab = "Covariate",

ylab = "Occupancy probability", las = 1, type = "l", col = "red",
lwd = 3, frame.plot = FALSE)

plot(X, z, main = "Realised (true) occurrence", xlab = "Covariate",
ylab = "Occurrence", las = 1, frame.plot = FALSE, col = "red",)

plot(X, p, ylim = c(0,1), main = "Detection probability",
xlab = "Covariate", ylab = "p", type = "l", lwd = 3, col = "red",
las = 1, frame.plot = FALSE)

plot(X, naive.pred, main = "Detection/nondetection observations \n
and conventional SDM", xlab = "Covariate", ylab = "Apparent
occupancy", ylim = c(min(y), max(y)), type = "l", lwd = 3, lty = 2,
col = "blue", las = 1, frame.plot = FALSE)

points(rep(X, T), y)
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# Return stuff
return(list(R = R, T = T, X = X, alpha.psi = alpha.psi, beta.psi =

beta.psi, alpha.p = alpha.p , beta.p = beta.p, psi = psi, z = z,
occ.fs = occ.fs, p = p, y = y))

}

We obtain one realization from the stochastic system just defined and
conduct a conventional species distribution model (Fig. 13.2):

sodata <- data.fn()
str(sodata) # Look at data

summary(glm(apply(y, 1, max) ~ X + I(X^2), family = binomial,
data = sodata))

Call:
glm(formula = apply(y, 1, max) ~ X + I(X^2), family = binomial,

data = sodata)

Deviance Residuals:
Min 1Q Median 3Q Max

−1.10984 −0.83363 −0.28985 −0.04219 2.45653

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) −1.0439 0.2624 −3.978 6.95e-05 ***
X 3.3989 0.8348 4.072 4.67e-05 ***
I(X^2) −3.2680 1.1757 −2.780 0.00544 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 213.27 on 199 degrees of freedom
Residual deviance: 170.95 on 197 degrees of freedom
AIC: 176.95

Number of Fisher Scoring iterations: 6

Hence, in this simulated data set and with a conventional species
distribution model, we identify an optimum value of the covariate for
the occupancy probability of the study species (see blue curve in bottom
right panel of Fig. 13.2). Let us see what a site-occupancy model can do.

# Specify model in BUGS language
sink("model.txt")
cat("
model {

# Priors
alpha.occ ~ dunif(−10, 10)
beta.occ ~ dunif(−10, 10)
alpha.p ~ dunif(−10, 10)
beta.p ~ dunif(−10, 10)

# Likelihood
for (i in 1:R) {
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# True state model for the partially observed true state
z[i] ~ dbern(psi[i]) # True occupancy z at site i
logit(psi[i]) <- alpha.occ + beta.occ * X[i]

for (j in 1:T) {

# Observation model for the actual observations
y[i,j] ~ dbern(p.eff[i,j]) # Detection-nondetection at i and j
p.eff[i,j] <- z[i] * p[i,j]
logit(p[i,j]) <- alpha.p + beta.p * X[i]
} #j

} #i

# Derived quantities
occ.fs <- sum(z[])# Number of occupied sites among those studied
}
",fill = TRUE)
sink()
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FIGURE 13.2 Features of the simulated data set, and truth behind it, and inference about
the system based on a conventional species distribution model (blue line in bottom right
panel). The truth is shown in red and observed data in black. (a) Occupancy probability,
(b) realized (true) occurrence, (c) detection probability, and (d) detection/nondetection
(“presence/absence”) observations and estimated occupancy probability under a
conventional species distribution model.
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# Bundle data
win.data <- list(y = sodata$y, X = sodata$X, R = nrow(sodata$y),

T = ncol(sodata$y))

# Initial values
zst <- apply(sodata$y, 1, max) # Good inits for latent states essential
inits <- function(){list(z = zst, alpha.occ = runif(1, −3, 3),

beta.occ = runif(1, −3, 3), alpha.p = runif(1, −3, 3), beta.p = runif
(1, −3, 3))}

# Parameters monitored
params <- c("alpha.occ", "beta.occ", "alpha.p", "beta.p", "occ.fs")

# MCMC settings
ni <- 10000
nt <- 8
nb <- 2000
nc <- 3

# Call WinBUGS from R (BRT 1 min)
out <- bugs(win.data, inits, params, "model.txt", n.chains = nc,

n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory =
bugs.dir, working.directory = getwd())

We compare the known truth in the data-generating mechanism with
our estimates of truth under the site-occupancy species distribution
model. We find that the model does a decent job at recovering the para-
meters for the habitat relationships of the probability of occupancy
(alpha.occ and beta.occ) and of detection (alpha.p and beta.p), but
that the estimates are much more precise for the relationship with detec-
tion. This makes sense because there is more data (n = 600 instead of
n = 200) from which to estimate those regression parameters. A total of 59
sites were occupied in our simulated data set, and at 45 of those, the study
species was discovered. Our model estimated 67 occurrences (95% CRI
57–78). This number, finite-sample occurrence, is not a function of popula-
tion occupancy probability, but of the latent occurrence states z, which we
can easily estimate in an MCMC-based analysis (Royle and Kéry, 2007).

TRUTH <- c(sodata$alpha.psi, sodata$beta.psi, sodata$alpha.p, sodata
$beta.p, sum(sodata$z))

print(cbind(TRUTH, out$summary[1:5, c(1,2,3,7)]), dig = 3)
TRUTH mean sd 2.5% 97.5%

alpha.occ −1 −1.269 0.274 −1.81 −0.738
beta.occ 3 4.084 0.854 2.58 5.939
alpha.p 1 0.925 0.330 0.28 1.584
beta.p −3 −2.942 0.546 −4.00 −1.865
occ.fs 59 67.335 5.291 57.00 78.000

sum(apply(sodata$y, 1, sum) > 0)# Apparent number of occupied sites
[1] 45

We graphically compare the conclusions from the two species distribu-
tion models (Fig. 13.3). We see again that the conventional approach,
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which ignores the effects of the observation process in the generation of
detection/nondetection data, models apparent rather than true species
distributions only (Kéry, 2011b).

naive.pred <- plogis(predict(glm(apply(sodata$y, 1, max) ~ X + I(X^2),
family = binomial, data = sodata)))

lin.pred2 <- out$mean$alpha.occ + out$mean$beta.occ * sodata$X

plot(sodata$X, sodata$psi, ylim = c(0, 1), main = "", ylab = "Occupancy
probability", xlab = "Covariate", type = "l", lwd = 3, col = "red",
las = 1, frame.plot = FALSE)

lines(sodata$X, naive.pred, ylim = c(0 ,1), type = "l", lty = 2, lwd = 3,
col = "blue")

lines(sodata$X, plogis(lin.pred2), ylim = c(0, 1), type = "l", lty = 1,
lwd = 2, col = "blue")

13.4 ANALYSIS OF REAL DATA SET: SINGLE-SEASON
OCCUPANCY MODEL

We will next analyze a small, but typical real-world occurrence data set:
surveys to breeding sites of the endangered beetle Rosalia alpina (Fig. 13.4;
see also the cover of Kéry, 2010) during a single flight period (July–August
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FIGURE 13.3 Comparison of true and estimated relationship between occupancy
probability and an environmental covariate under a site-occupancy model (solid blue) and
under the conventional approach that ignores detection probability (dashed blue). Truth is
shown in red.
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2009). In Switzerland, this striking blue bug lays its eggs into the wood of
dead beech trees Fagus sylvatica, preferentially in tall and old logs, but unfor-
tunately also in piles of firewood stocked in the forest only temporarily.
Larvae develop over 3–4 years; hence, eggs laid in firewood are normally
doomed. Nevertheless, checking firewood piles in forests is an efficient
search strategy for this rare and elusive beetle. In 2009, one of us (MK)
surveyed one of the few Swiss areas where the species is known to occur,
the hills around Movelier in the Swiss Jura mountains.

The complete data set (“bluebug.txt”) contains replicated counts at a total
of 27 sites (woodpiles) in the Movelier region in 2009. There were up to six
replicate counts at each woodpile; the count result of which is called detX.
Woodpiles were either at the forest edge or more in the interior of a forest
(covariate forest_edge), and individual visits took place at varying dates
(covariate dateX) and times of day (hours in the afternoon, covariates hX).

A summary of these data is shown in Table 13.1. We see that Rosalia
was detected at 10 of 27 woodpiles and from 1 to 5 times. Clearly, detec-
tion probability at an occupied woodpile is not perfect; for instance, the
woodpile in row 10 was surveyed six times and Rosalia was seen only
once. It is natural to wonder whether other woodpiles might have been
occupied but Rosalia was simply missed. Another question might be to
ask how many times a woodpile might have to be checked in order to
detect Rosalia at least once when it occurs. And finally, we may wonder

FIGURE 13.4 The remarkable “blue bug”, the cerambycid beetle Rosalia alpina,
Switzerland, 2009 (Photograph by T. Marent).
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TABLE 13.1 A Summary of the Blue Bug Data Set (bluebug.txt)
That Keeps Track Only of Detections and Nondetections.

0 1 1 1 1 1 5

1 1 1 1 1 – 5

1 0 1 0 0 1 3

1 0 0 0 1 1 3

1 1 – – – – 2

1 – – – – – 1

0 0 0 0 1 0 1

1 – – – – – 1

1 – – – – – 1

1 0 0 0 0 0 1

0 0 0 0 0 – 0

0 0 0 0 0 – 0

0 0 0 0 0 – 0

0 – – – – – 0

0 – – – – – 0

0 – – – – – 0

0 – – – – – 0

0 0 – – – – 0

0 0 – – – – 0

0 – – – – – 0

0 0 – – – – 0

0 0 – – – – 0

0 0 – – – – 0

0 0 0 – – – 0

0 – – – – – 0

0 – – – – – 0

0 – – – – – 0

Note: Rows denote woodpiles and columns, except for the right-most column, denote
survey occasions. The total number of surveys with detections is shown in the right-
most column. Surveys with Rosalia detections are shown in buff color, those without
Rosalia detections in yellow, and missing values shown as dashes. For pure conveni-
ence, sites have been ordered by decreasing number of surveys with detections.
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whether the location of a woodpile, at the forest edge or in the interior,
may affect the probability of it being occupied, and similarly, whether
there were relationships between detection probability and the date and
time of day, respectively, at which a survey took place, or whether Rosalia
was detected before (behavioral effect, see Section 6.2.3.). We will answer
these questions with a site-occupancy species distribution model now.

# Read in the data
data <- read.table("bluebug.txt", header = TRUE)

# Collect the data into suitable structures
y <- as.matrix(data[,4:9]) # as.matrix essential for WinBUGS
y[y>1] <- 1 # Reduce counts to 0/1
edge <- data$forest_edge
dates <- as.matrix(data[,10:15])
hours <- as.matrix(data[,16:21])

# Standardize covariates
mean.date <- mean(dates, na.rm = TRUE)
sd.date <- sd(dates[!is.na(dates)])
DATES <- (dates-mean.date)/sd.date # Standardise date
DATES[is.na(DATES)] <- 0 # Impute zeroes (means)

mean.hour <- mean(hours, na.rm = TRUE)
sd.hour <- sd(hours[!is.na(hours)])
HOURS <- (hours-mean.hour)/sd.hour # Standardise hour
HOURS[is.na(HOURS)] <- 0 # Impute zeroes (means)

In the BUGS code below, we “stabilize” the logit to avoid numerical
under- or overflow by truncating values more extreme than (−999, 999) on
the logit scale. This should hardly affect the inference because this restricts
the value of the linear predictor to the range (plogis(−999), plogis(999)).

# Specify model in BUGS language
sink("model.txt")
cat("
model {

# Priors
alpha.psi ~ dnorm(0, 0.01)
beta.psi ~ dnorm(0, 0.01)
alpha.p ~ dnorm(0, 0.01)
beta1.p ~ dnorm(0, 0.01)
beta2.p ~ dnorm(0, 0.01)
beta3.p ~ dnorm(0, 0.01)
beta4.p ~ dnorm(0, 0.01)

# Likelihood
# Ecological model for the partially observed true state
for (i in 1:R) {

z[i] ~ dbern(psi[i]) # True occurrence z at site i
psi[i] <- 1 / (1 + exp(−lpsi.lim[i]))
lpsi.lim[i] <- min(999, max(−999, lpsi[i]))
lpsi[i] <- alpha.psi + beta.psi * edge[i]
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# Observation model for the observations
for (j in 1:T) {

y[i,j] ~ dbern(mu.p[i,j]) # Detection-nondetection at i and j
mu.p[i,j] <- z[i] * p[i,j]
p[i,j] <- 1 / (1 + exp(−lp.lim[i,j]))
lp.lim[i,j] <- min(999, max(−999, lp[i,j]))
lp[i,j] <- alpha.p + beta1.p * DATES[i,j] + beta2.p *

pow(DATES[i,j], 2) + beta3.p * HOURS[i,j] + beta4.p *
pow(HOURS[i,j], 2)

} #j
} #i

# Derived quantities
occ.fs <- sum(z[]) # Number of occupied sites
mean.p <- exp(alpha.p) / (1 + exp(alpha.p)) # Average detection
}
",fill = TRUE)
sink()

# Bundle data
win.data <- list(y = y, R = nrow(y), T = ncol(y), edge = edge, DATES =

DATES, HOURS = HOURS)

# Initial values
zst <- apply(y, 1, max, na.rm = TRUE) # Good starting values crucial
inits <- function(){list(z = zst, alpha.psi=runif(1, −3, 3), alpha.p =

runif(1, −3, 3))}

# Parameters monitored
params <- c("alpha.psi", "beta.psi", "mean.p", "occ.fs", "alpha.p",

"beta1.p", "beta2.p", "beta3.p", "beta4.p")

# MCMC settings
ni <- 30000
nt <- 10
nb <- 20000
nc <- 3

# Call WinBUGS from R (BRT < 1 min)
out <- bugs(win.data, inits, params, "model.txt", n.chains = nc,

n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory =
bugs.dir, working.directory = getwd())

We inspect the estimates and then illustrate.

# Summarize posteriors
print(out, dig = 2)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha.psi 5.83 5.26 −0.10 1.73 4.26 8.67 17.98 1.10 46
beta.psi −6.61 5.26 −18.83 −9.38 −5.13 −2.60 −0.44 1.10 48
mean.p 0.56 0.15 0.27 0.46 0.56 0.67 0.85 1.01 200
occ.fs 17.02 2.38 11.00 16.00 17.00 18.00 21.00 1.01 220
alpha.p 0.29 0.66 −0.97 −0.15 0.26 0.72 1.71 1.01 160
beta1.p 0.34 0.40 −0.42 0.06 0.33 0.60 1.13 1.00 2400
beta2.p 0.21 0.47 −0.71 −0.10 0.19 0.51 1.17 1.01 230
beta3.p −0.48 0.42 −1.37 −0.75 −0.46 −0.20 0.31 1.01 330
beta4.p −0.59 0.32 −1.28 −0.79 −0.57 −0.37 0.00 1.00 1600
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We note that convergence for the occupancy parameters could be better
(Rhat = 1.10). We also note (not shown) that parameter estimates are quite
sensitive to the priors chosen in the model. This is not quite unexpected,
given the small size of the data set. Thus, we should state our inferences
with caution.

Earlier on, we asked a series of questions that we wanted to answer
with the site-occupancy model. The first was “How many woodpiles
were likely occupied by Rosalia alpina, given the detection probability
estimated?”. We find the answer in the tabular summary of the
estimates above, it is 17.02 (95% CRI 11–21). Since this is a key quantity
in our analysis, we want to visualize its entire posterior distribution
(Fig. 13.5).

# Posterior distribution of the number of occupied woodpiles in actual
sample

hist(out$sims.list$occ.fs, nclass = 30, col = "gray", main = "", xlab =
"Number of occupied woodpiles (occ.fs)", xlim = c(9, 27))

abline(v = 10, lwd = 2) # The observed number

The second question of interest was “Given that we may overlook the
species at occupied woodpiles, how many times must we survey a
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FIGURE 13.5 Posterior distribution of the number of woodpiles occupied by the
cerambycid beetle Rosalia alpina in the Movelier region in 2009 among the 27 surveyed
woodpiles. Vertical line indicates the observed number of 10.
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woodpile before we can be “almost certain” to detect it at least once, when
it occurs?”. We can answer this question by using a simple binomial argu-
ment put forwards in Kéry (2002) and many times elsewhere: the probabil-
ity P* to detect the species during n identical and independent surveys is
P* = 1− (1− p)n, where p is the detection probability from a site-occupancy
model. Since detection varies in all sorts of ways (see below), we have to
decide on one “useful” value of p. We take the mean.p monitored in the
analysis. Using the MCMC samples for that quantity, we can incorporate
our uncertainty about detection probability into the answer to our ques-
tion. We will compute P* for values of n between 1 and 10 and see where it
is at least 95%, which will be our definition of “almost certain”.

Pstar <- array(NA, dim = c(out$n.sims, 10))
x <- cbind(rep(1, 3000), rep(2, 3000), rep(3, 3000), rep(4, 3000), rep

(5, 3000), rep(6, 3000), rep(7, 3000), rep(8, 3000), rep(9, 3000),
rep(10, 3000))

for (i in 1:out$n.sims) {
for (j in 1:10){

Pstar[i,j] <- 1 − (1 − out$sims.list$mean.p[i])^j
} #j

} #i

boxplot(Pstar ~ x, col = "gray", las = 1, ylab = "Pstar", xlab = "Number of
surveys", outline = FALSE)

abline(h = 0.95, lty = 2, lwd = 2)

Hence, 3 – 4 “average” surveys were required to be almost certain to
detect Rosalia alpina at a woodpile where it occurred (Fig. 13.6).

What about the occupancy at woodpiles at the forest edge as compared
to the forest interior? Our parameter beta.psi represents the difference in
occupancy probability, on the logit scale between woodpiles at the forest
edge and those in the interior. The 95% CRI of its estimate does not cover
0; hence, we can be rather confident in that Rosalia was more widespread
at woodpiles in the forest interior. We convert the occupancy parameters
into an estimate of occupancy in both locations and plot that.

par(mfrow = c(2, 1))
hist(plogis(out$sims.list$alpha.psi), nclass = 40, col = "gray", main =

"Forest interior", xlab = "Occupancy probability", xlim = c(0, 1))
hist(plogis(out$sims.list$alpha.psi+ out$sims.list$beta.psi),

nclass = 40, col = "gray", main = "Forest edge", xlab = "Occupancy
probability", xlim = c(0, 1))

So, indeed, there appears to be a big effect of the location of a woodpile
on the probability that it is occupied by Rosalia alpina: the forest interior is
much preferred (Fig. 13.7).

Finally, we want to answer the questions about a relationship between
detection probability and date and time of day, respectively. We can see
from the 95% CRI in the summary results table above that the regression
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FIGURE 13.7 Posterior distributions of the probability of occupancy by Rosalia alpina for
a woodpile in the forest interior (top) and at the forest edge (bottom) in Movelier, 2009.
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FIGURE 13.6 The relationship between P*, the probability to detect Rosalia alpina at a
woodpile at least once during n surveys, and n for the blue bug data set. The dashed line
indicates 95% certainty to detect the species when present.
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parameters for date, beta1.p and beta2.p, largely overlap zero but
that those for time of day, beta3.p and beta4.p, do not do this so clearly
(at least not beta4.p, which just about straddles 0). We will plot the
predicted relationship in a figure that also shows the uncertainty in the
estimates by plotting the relationships for a random MCMC sample of
the regression coefficients involved in their computation (Fig. 13.8). This
again suggests the absence of a date effect on detection probability
(top panel); however, detection probability seems to be highest around
5 – 6 pm (bottom panel). These results can be interesting for designing a
monitoring program for this endangered species.

# Predict effect of time of day with uncertainty
mcmc.sample <- out$n.sims

original.date.pred <- seq(0, 60, length.out = 30)
original.hour.pred <- seq(180, 540, length.out = 30)
date.pred <- (original.date.pred − mean.date)/sd.date
hour.pred <- (original.hour.pred − mean.hour)/sd.hour
p.pred.date <- plogis(out$mean$alpha.p + out$mean$beta1.p *

date.pred + out$mean$beta2.p * date.pred^2 )
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FIGURE 13.8 Predictions of the covariate relationships that account for estimation
uncertainty. Top, effect of date; bottom, effect of time of day. Blue lines show the posterior
mean, and gray lines show the relationships based on a random posterior sample of size 200
to visualize estimation uncertainty.
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p.pred.hour <- plogis(out$mean$alpha.p + out$mean$beta3.p *
hour.pred + out$mean$beta4.p * hour.pred^2 )

array.p.pred.hour <- array.p.pred.date <- array(NA, dim = c(length
(hour.pred), mcmc.sample))

for (i in 1:mcmc.sample){
array.p.pred.date[,i] <- plogis(out$sims.list$alpha.p[i] +

out$sims.list$beta1.p[i] * date.pred + out$sims.list$beta2.p[i] *
date.pred^2)

array.p.pred.hour[,i] <- plogis(out$sims.list$alpha.p[i] +
out$sims.list$beta3.p[i] * hour.pred + out$sims.list$beta4.p[i] *
hour.pred^2)

}

# Plot for a subsample of MCMC draws
sub.set <- sort(sample(1:mcmc.sample, size = 200))

par(mfrow = c(2, 1))
plot(original.date.pred, p.pred.date, main = "", ylab = "Detection

probability", xlab = "Date (1 = 1 July)", ylim = c(0, 1), type = "l",
lwd = 3, frame.plot = FALSE)

for (i in sub.set){
lines(original.date.pred, array.p.pred.date[,i], type = "l",

lwd = 1, col = "gray")
}

lines(original.date.pred, p.pred.date, type = "l", lwd = 3,
col = "blue")

plot(original.hour.pred, p.pred.hour, main = "", ylab = "Detection
probability", xlab = "Time of day (mins after noon)", ylim = c(0, 1),
type = "l", lwd = 3, frame.plot = FALSE)

for (i in sub.set){
lines(original.hour.pred, array.p.pred.hour[,i], type = "l",

lwd = 1, col = "gray")
}

lines(original.hour.pred, p.pred.hour, type = "l", lwd = 3,
col = "blue")

13.5 DYNAMIC (MULTISEASON)
SITE-OCCUPANCY MODELS

So farwe have beenmodelingdetection/nondetection observations from
R sites and J replicate surveys, yielding data yi,j for site i and survey j. We
required a so-called closed population, which in the occupancy context
means that the occurrence state of site i must not change over the J repli-
cates. The closure assumption is often a reasonable approximation for
studies that are short relative to the dynamics of the system investigated.
However, in other cases, closure may not hold for all replicate surveys, for
instance, when animals randomly move onto and off study sites. This
specific form of nonclosure is called random temporary emigration, and
the models of the preceding sections may still be applied. The probability
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of random temporary emigration, that is, of being temporarily unavailable
for detection, is confounded with the probability of detection given avail-
ability (Kendall, 1999). In other words, the detection parameter refers to
the product of the probability of being available for detection and that
of being detected, given being present. According to conventional
wisdom, the interpretation of the occupancy parameter simply changes
from the probability of permanent presence to the probability of use sometime
during the study period (MacKenzie, 2005).

However, there may be cases when temporary emigration (dispersal) is
so strong as to make the resulting estimates of probability of use mean-
ingless, for example, effectively 1. In other cases, temporary emigration
may be Markovian: whether a site is occupied at time t = 2 depends on
whether it was so at t = 1. Probability of (un-)availability is then no longer
confounded with the probability of detection given availability, and naive
application of single-season occupancy models results in biased estimates
of occupancy (Kendall, 1999; Rota et al., 2009).

As a remedy, the J survey occasions may be assigned to subgroups and
closure assumed only within each such subgroup. Owing to the seasonal-
ity of nature in most parts of the world, seasons over a series of years
represent an extremely common, natural grouping factor. As an example,
for birds or amphibians, replicate surveys are often conducted during the
breeding season and this may be repeated over multiple years. Such a
sampling at two temporal scales is called the robust design (Williams
et al., 2002); each year, or breeding season, is called a primary sampling
occasion, and the surveys within each season are called secondary sam-
pling occasions. It is natural then to assume closure among secondary sea-
sons only, that is, within each primary season, and allow change in the
occurrence state among primary seasons. In the context of site-occupancy
models, we then have observations from R sites, J replicate surveys (sec-
ondary sampling occasions), and K primary seasons (such as years), yield-
ing detection/nondetection data yi,j,k for site i, within-season survey j, and
season k. Note that up to now in this chapter, index j was for all occasions,
while in this section j will index secondary occasions only.

Given our expectation that occupancy changes among seasons k, how
should we model occupancy dynamics? It would be simplest to treat
season as a group and fit separate parameters for each, as we did in
Section 12.3 in the context of abundance estimation in an open popula-
tion. This is a reasonable approach, but there may be two issues with it.
First, it treats observations from a site surveyed in different seasons as
independent. However, whether a site is occupied at one time may
depend on whether it was occupied previously, violating the indepen-
dence assumption and representing a form of pseudoreplication
(Hurlbert, 1984). This may result in too short standard error estimates,
so it may be desirable to account for the repeated-measures nature of
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multiseason data. Second, the interest of a study may focus on the para-
meters that govern occupancy dynamics, that is, colonization and extinc-
tion/survival. Occupancy is the quantity that metapopulation ecologists
also call incidence (Hanski, 1994). Rather than simply describing changes
of incidence over time, a metapopulation ecologist is interested in estimat-
ing probabilities of patch survival (or extinction) and patch colonization.
This provides us with the motivation to explicitly model occupancy
dynamics in terms of parameters describing the demographic compo-
nents of that dynamics. This is achieved by the multiseason, or dynamic,
site-occupancy model of MacKenzie et al. (2003). Moving from a single-
season to a dynamic site-occupancy model is analogous to moving
from a closed capture–recapture model (Chapter 6) to a Jolly-Seber
model (Chapter 10) or from a classic binomial mixture model (Chapter
12) to the generalized binomial mixture model of Dail andMadsen (2011).

To describe detection/nondetection data yi,j,k for site i and (within-
season) replicate survey j in season k, we follow the hierarchical, or
state-space, formulation of the model by Royle and Kéry (2007). We describe
the observed data in a two-level random-effects model, that is, as a set of
two linked stochastic processes or equations. The first equation describes
the ecological process, that is, the evolution of the latent occurrence state
zi,k of site i over season k. Occurrence is latent because it is only partly obser-
vable and hence must be estimated from the observations yi,j,k. The second
equation describes the observation process, that is, the mapping of the latent
state zi,k on observation yi,j,k. The basic model is thus the following:

The sole change to the single-season occupancy model is the addition of
an index for season, k. The model now describes the latent occurrence state
zi,k at site i in season k as a Bernoulli trial with occupancy parameter ψi,k.
Observation yi,j,k is equal to 1 if a species is detected during temporal repli-
cate j at site i in season k, and zero otherwise, and is another Bernoulli trial
governed by the product of the occurrence state at i and k and detection
probability pi,j,k.

As said above, we could model yi,j,k by simply treating season k as a
group, which would be equivalent to fitting separate occupancy models
to the data from each season. This is how we modeled changes in abun-
dance over multiple seasons in Section 12.3. But now, we will describe the
state dynamics in an explicit, Markovian way instead: we will specify an
initial state and two sets of parameters that govern subsequent changes in
a first-order autoregressive manner. This is a simple extension of the eco-
logical process model above. For clarity, we will drop the site index (i).

zi,k ~ Bernoulli(ψi,k) 1. Ecological process yields true state

yi,j,k|zi,k ~ Bernoulli(zi,kpi,j,k) 2. Observation process yields observations
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Hence, in season 1, occurrence is a simple Bernoulli trial as before. In all
later seasons, the occurrence state zk+1 of a site in season k + 1 is a Bernoulli
trial with a success parameter that depends on two things: whether the site
was occupied at time k and on the value of either a survival or a coloniza-
tion parameter. Hence, if a site was occupied during season k (i.e., zk = 1 and
therefore, 1 − zk = 0), it will be re-occupied in the following season with
probability ϕk; this is the (site) survival probability. Of course, we could
equivalently describe this in terms of the complement of survival, extinction
probability 1 − ϕk. On the other hand, if a site was unoccupied during
season k (i.e., zk = 0 and therefore, 1 − zk = 1), it will be occupied at k + 1
with probability γk; this is the (site) colonization probability.

The state process of the dynamic site-occupancy model is exactly equiva-
lent to a classical metapopulation model (Hanski, 1998), which expresses
changes between time t and t + 1 in the occurrence state of a collection of
patches as a function of the probabilities of colonization of patches unoc-
cupied at time k, and of survival (or alternatively, of extinction) of patches
that were occupied at time k. This model makes the important assumption
that the occurrence state of each patch can be determined perfectly, that is,
that detection probability is equal to 1. Dynamic site-occupancy models
represent an extended metapopulation model: the extension lies in an
explicit accounting for imperfect detection (MacKenzie et al., 2003; Royle
and Kéry, 2007), which becomes possible whenever replicated detection/
nondetection observations are available within single periods of closure for
at least some sites and/or such periods. Not accounting for imperfect
detection in conventional metapopulation models will lead to biased esti-
mates of all estimated quantities: incidence will be estimated too low and
the probabilities of extinction, colonization, and turnover will all be esti-
mated too high (Moilanen (2002); Royle and Dorazio (2008); see also Risk
et al. (2011), for a robust-design incidence function model).

We will next simulate a data set under the dynamic site-occupancy
model and analyze that. Afterwards, we will analyze a real data set.
You will find another example of a dynamic occupancy model in the
OpenBUGS manual (Examples > Ecology examples > Sparrowhawks).

13.5.1 Generation and Analysis of Simulated Data

We assume that we have data from a typical population study of a (noc-
turnal) bird of prey, the Long-eared owl (Fig. 13.9). Each of a total of R ter-
ritories was surveyed on J occasions during each of K breeding seasons
(years), and it was recorded whether any sign of territory occupation was

z1 ~ Bernoulli(ψ1) 1a. Initial ecological state in first season

zk+1|zk ~ Bernoulli(zkϕk +
(1− zk)γk)

1b. Markovian transitions in later
seasons
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detected. Our data yi,j,k represent detection (y = 1) or nondetection (y = 0) of
an owl in territory i, during replicate survey j in breeding season (year) k.
Note that here, occupancy is equivalent to abundance because the number
of occupied sites is exactly the local population size of owls.

We define a function to generate a data set. As always, apart from
generating a data set to be analyzed later, this function may be used to
get insights into the structure of the model used to analyze the data, issues
of parameter estimation, or required samples sizes (see Section 1.5).

data.fn <- function(R = 250, J = 3, K = 10, psi1 = 0.4, range.p =
c(0.2, 0.4), range.phi = c(0.6, 0.8), range.gamma = c(0, 0.1)) {

# Function to simulate detection/nondetection data for dynamic
site-occ model

# Annual variation in probabilities of patch survival, colonization and
# detection is specified by the bounds of a uniform distribution.
# Function arguments:
# R – Number of sites
# J – Number of replicate surveys
# K – Number of years
# psi1 – occupancy probability in first year
# range.p – bounds of uniform distribution from which annual p drawn
# range.psi and range.gamma – same for survival and colonization
probability

FIGURE 13.9 Long-eared owl (Asio otus), Finland, 2008 (Photograph by T. Muukkonen).
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# Set up some required arrays
site <- 1:R # Sites
year <- 1:K # Years
psi <- rep(NA, K) # Occupancy probability
muZ <- z <- array(dim = c(R, K)) # Expected and realized occurrence
y <- array(NA, dim = c(R, J, K)) # Detection histories

# Determine initial occupancy and demographic parameters
psi[1] <- psi1 # Initial occupancy probability
p <- runif(n = K, min = range.p[1], max = range.p[2])
phi <- runif(n = K-1, min = range.phi[1], max = range.phi[2])
gamma <- runif(n = K-1, min = range.gamma[1], max = range.gamma[2])

# Generate latent states of occurrence
# First year
z[,1] <- rbinom(R, 1, psi[1]) # Initial occupancy state

# Later years
for(i in 1:R){ # Loop over sites

for(k in 2:K){ # Loop over years
muZ[k] <- z[i, k−1]*phi[k−1] + (1−z[i, k−1])*gamma[k−1]

# Prob for occ.
z[i,k] <- rbinom(1, 1, muZ[k])
} #k

} #i

# Plot realised occupancy
plot(year, apply(z, 2, mean), type = "l", xlab = "Year", ylab =

"Occupancy or Detection prob.", col = "red", xlim = c(0,K+1),
ylim = c(0,1), lwd = 2, lty = 1, frame.plot = FALSE, las = 1)

lines(year, p, type = "l", col = "red", lwd = 2, lty = 2)

# Generate detection/nondetection data
for(i in 1:R){

for(k in 1:K){
prob <- z[i,k] * p[k]
for(j in 1:J){

y[i,j,k] <- rbinom(1, 1, prob)
} #j

} #k
} #i

# Compute annual population occupancy
for (k in 2:K){

psi[k] <- psi[k-1]*phi[k-1] + (1-psi[k-1])*gamma[k-1]
}

# Plot apparent occupancy
psi.app <- apply(apply(y, c(1,3), max), 2, mean)
lines(year, psi.app, type = "l", col = "black", lwd = 2)
text(0.85*K, 0.06, labels = "red solid – true occupancy\n red

dashed – detection\n black – observed occupancy")

# Return data
return(list(R = R, J = J, K = K, psi = psi, psi.app = psi.app, z = z,

phi = phi, gamma = gamma, p = p, y = y))
}
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We execute the function once to obtain a data set for 250 owl territories
with three surveys in each of 10 years (Fig. 13.10a).

data <- data.fn(R = 250, J = 3, K = 10, psi1 = 0.6, range.p = c(0.1, 0.9),
range.phi = c(0.7, 0.9), range.gamma = c(0.1, 0.5))

We attach the data set and produce a simple summary.

attach(data)
str(data)
> str(data)
List of 10
$ R : num 250

$ J : num 3

$ K : num 10

$ psi : num [1:10] 0.6 0.535 0.635 0.658 0.71 ...

$ psi.app : num [1:10] 0.48 0.536 0.328 0.356 0.24 0.232 0.38 0.3 0.184 0.512

$ z : num [1:250, 1:10] 0 1 0 1 1 1 1 1 0 1 ...

$ phi : num [1:9] 0.791 0.761 0.805 0.879 0.772 ...

$ gamma : num [1:9] 0.151 0.489 0.403 0.384 0.105 ...

$ p : num [1:10] 0.382 0.659 0.19 0.246 0.151 ...

$ y : num [1:250, 1:3, 1:10] 0 0 0 1 1 0 1 0 0 0 ...

We conduct the analysis using code from Royle and Kéry (2007), which
includes the estimation of the actual number of occupied territories
(among the 250), the occupancy-based population growth rate, and the
turnover rate.

(a) (b)

1.0

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10
Year

0 2 4 6 8 10
Year

O
cc

up
an

cy
 o

r 
de

te
ct

io
n 

pr
ob

ab
ili

ty 1.0

0.8

0.6

0.4

0.2

0.0

O
cc

up
an

cy
 p

ro
ba

bi
lit

y
FIGURE 13.10 (a) Simulated territory occupancy data for long-eared owls. Truth is
shown in red (solid, occupancy probability; dashed, detection probability) and the
observed occupancy probability in black. The difference between the red and the black
lines is due to detection error. (b) Comparison between true, observed, and estimated
occupancy probability. Truth is shown in red, estimates under the site-occupancy model
(with 95% CRI) are in blue, and naïve estimates (observed values) are in black. (Note:
Using the R code in the book, you will generate each plot separately.)
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# Specify model in BUGS language
sink("Dynocc.txt")
cat("
model {

# Specify priors
psi1 ~ dunif(0, 1)
for (k in 1:(nyear-1)){

phi[k] ~ dunif(0, 1)
gamma[k] ~ dunif(0, 1)
p[k] ~ dunif(0, 1)
}

p[nyear] ~ dunif(0, 1)

# Ecological submodel: Define state conditional on parameters
for (i in 1:nsite){

z[i,1] ~ dbern(psi1)
for (k in 2:nyear){

muZ[i,k]<- z[i,k−1]*phi[k−1] + (1−z[i,k−1])*gamma[k−1]
z[i,k] ~ dbern(muZ[i,k])
} #k

} #i

# Observation model
for (i in 1:nsite){

for (j in 1:nrep){
for (k in 1:nyear){

muy[i,j,k] <- z[i,k]*p[k]
y[i,j,k] ~ dbern(muy[i,j,k])
} #k

} #j
} #i

# Derived parameters: Sample and population occupancy, growth rate
and turnover

psi[1] <- psi1
n.occ[1]<-sum(z[1:nsite,1])
for (k in 2:nyear){

psi[k] <- psi[k−1]*phi[k−1] + (1−psi[k−1])*gamma[k−1]
n.occ[k] <- sum(z[1:nsite,k])
growthr[k] <- psi[k]/psi[k−1]
turnover[k−1] <- (1 − psi[k−1]) * gamma[k−1]/psi[k]
}

}
",fill = TRUE)
sink()

# Bundle data
win.data <- list(y = y, nsite = dim(y)[1], nrep = dim(y)[2], nyear = dim

(y)[3])

# Initial values
Zst <- apply(y, c(1, 3), max) # Observed occurrence as inits for z
inits <- function(){ list(z = zst)}

# Parameters monitored
params <- c("psi", "phi", "gamma", "p", "n.occ", "growthr",

"turnover")
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# MCMC settings
ni <- 2500
nt <- 4
nb <- 500
nc <- 3

# Call WinBUGS from R (BRT 3 min)
out <- bugs(win.data, inits, params, "Dynocc.txt", n.chains = nc,

n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory =
bugs.dir, working.directory = getwd())

# Summarize posteriors
print(out, dig = 2)
[...]

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

psi[1] 0.61 0.04 0.53 0.58 0.61 0.64 0.69 1.00 720

[...]
psi[10] 0.53 0.03 0.46 0.50 0.53 0.55 0.59 1.00 810

phi[1] 0.83 0.04 0.75 0.81 0.83 0.86 0.90 1.00 1500

[...]
phi[9] 0.67 0.06 0.55 0.63 0.68 0.71 0.80 1.00 1500

gamma[1] 0.12 0.06 0.01 0.08 0.12 0.17 0.25 1.00 1500

[...]
gamma[9] 0.24 0.12 0.02 0.15 0.24 0.33 0.44 1.00 1500

p[1] 0.40 0.03 0.35 0.38 0.40 0.42 0.47 1.00 1100

[...]
p[10] 0.71 0.03 0.66 0.69 0.71 0.72 0.75 1.00 1500

n.occ[1] 152.32 7.48 138.00 147.00 152.00 158.00 166.00 1.00 1500

[...]
n.occ[10] 131.51 2.18 128.00 130.00 131.00 133.00 137.00 1.00 1100

growthr[2] 0.91 0.06 0.80 0.87 0.91 0.95 1.04 1.00 1500

[...]
growthr[10] 0.83 0.14 0.62 0.73 0.81 0.90 1.16 1.00 1400

turnover[1] 0.09 0.05 0.01 0.05 0.08 0.12 0.20 1.00 1500

[...]
turnover[9] 0.17 0.11 0.01 0.09 0.16 0.24 0.41 1.00 1500

[...]

We compare truth and estimates of truth (posterior mean, sd, and 95%
CRI) in tables …

print(cbind(data$psi, out$summary[1:K, c(1, 2, 3, 7)]), dig = 3)
print(cbind(data$phi, out$summary[(K+1):(K+(K−1)), c(1, 2, 3, 7)]),

dig = 3)
print(cbind(data$gamma, out$summary[(2*K):(2*K+(K−2)), c(1, 2, 3,

7)]), dig = 3)
print(cbind(data$p, out$summary[(3*K−1):(4*K−2), c(1, 2, 3, 7)]),

dig = 3)

… and in a picture (Fig. 13.10b).

plot(1:K, data$psi, type = "l", xlab = "Year", ylab = "Occupancy
probability", col = "red", xlim = c(0,K+1), ylim = c(0,1), lwd = 2,
lty = 1, frame.plot = FALSE, las = 1)
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lines(1:K, data$psi.app, type = "l", col = "black", lwd = 2)
points(1:K, out$mean$psi, type = "l", col = "blue", lwd = 2)
segments(1:K, out$summary[1:K,3], 1:K,out$summary[1:K,7],

col = "blue", lwd = 1)

We are rather satisfied with the performance of the metapopulation
estimators of the model.

13.5.2 Dynamic Occupancy Modeling in a Real Data Set

As another illustration of the dynamic occupancy model of MacKenzie
et al. (2003), we will use data from the Six-spot burnet (Fig. 13.11) collected
in the Swiss butterfly monitoring program. Remember that we have 95
sites with two replications in each of 7 seasons, and that a “season”

FIGURE 13.11 The Six-spot burnet Zygaena filipendulae, a day-flying moth, Switzerland,
2004 (Photograph by T. Marent).
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represents one day, within which a transect is surveyed back and forth
(for further description, see Section 12.3; Kéry et al. (2009b); Dorazio
et al. (2010)). This is a more typical example of an occupancy model,
where a “site” represents a 2.5 km transect in a 1 km2 square and is so
large relative to the space requirements of the study species that is can
be inhabited by many (hundred) individuals. Thus, there is no longer a
1:1 relationship between occupancy and abundance as in the owl example.

After reading the count data into R, we will first reformat the data into a
3-dimensional array, as we did for the multiseason binomial mixture model
in Section 12.3. We start with a format where butterfly counts from different
“seasons” (days) are stacked. For this code to work, the data must be
balanced, that is, we must have the same number of surveyed sites in
each “season” (day). This is not a requirement of the model, simply of
our code. If you have variation in the number of sites surveyed, then you
have to “fill in” the data using NAs to make them balanced or else vectorize
the BUGS model description (see chapter 21 in Kéry, 2010).

# Read in the data and put it into 3D array
bdat <- read.table(file = "burnet.txt", header = T)
str(bdat)

y <- array(NA, dim = c(95, 2, 7)) # 95 sites, 2 reps, 7 days

for (i in 1:7){
sel.rows <- bdat$day == i
y[,,i] <- as.matrix(bdat)[sel.rows, 3:4]
}

str(y)

# Convert counts to detection/nondetection data
y[y>0] <- 1

# Look at the number of sites with detections for each day
tmp <- apply(y, c(1,3), max, na.rm = TRUE)
tmp[tmp == "-Inf"] <- NA
apply(tmp, 2, sum, na.rm = TRUE)
[1] 0 0 3 10 17 17 6

There are no detections of burnets at all during the first two days. We
are now ready to fit the dynamic occupancy model in WinBUGS. The code
is the same as before (Section 13.5.1) so we simply recycle the BUGS model
description from there.

# Bundle data
win.data <- list(y = y, nsite = dim(y)[1], nrep = dim(y)[2], nyear = dim

(y)[3])

# Initial values
inits <- function(){ list(z = apply(y, c(1, 3), max))}

# Parameters monitored
params <- c("psi", "phi", "gamma", "p", "n.occ", "growthr",

"turnover")

446 13. ESTIMATION OF OCCUPANCY



# MCMC settings
ni <- 5000
nt <- 4
nb <- 1000
nc <- 3

# Call WinBUGS from R (BRT 1 min)
out1 <- bugs(win.data, inits, params, "Dynocc.txt", n.chains = nc,

n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory =
bugs.dir, working.directory = getwd())

# Summarize posteriors
print(out1, dig = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

psi[1] 0.106 0.208 0.001 0.009 0.025 0.078 0.895 1.048 60

[...]
psi[7] 0.117 0.052 0.044 0.080 0.106 0.142 0.246 1.005 490

phi[1] 0.442 0.294 0.014 0.177 0.419 0.687 0.969 1.007 870

[...]
phi[6] 0.447 0.183 0.170 0.313 0.415 0.551 0.900 1.002 1000

gamma[1] 0.151 0.230 0.001 0.014 0.050 0.171 0.905 1.025 100

[...]
gamma[6] 0.026 0.026 0.001 0.008 0.018 0.036 0.095 1.004 650

p[1] 0.294 0.296 0.002 0.038 0.179 0.497 0.948 1.037 79

[...]
p[7] 0.536 0.183 0.195 0.398 0.540 0.679 0.864 1.005 430

n.occ[1] 9.268 19.972 0.000 0.000 1.000 6.000 85.000 1.171 32

[...]
n.occ[7] 9.515 3.971 6.000 7.000 8.000 11.000 20.000 1.009 300

growthr[2] 21.130 257.481 0.078 0.841 2.037 6.563 117.412 1.026 88

[...]
growthr[7] 0.548 0.230 0.222 0.384 0.504 0.671 1.101 1.003 710

turnover[1] 0.714 0.287 0.054 0.539 0.826 0.953 0.998 1.011 260

[...]
turnover[6] 0.172 0.139 0.005 0.061 0.137 0.251 0.505 1.003 940

We see that some of the parameters associated with the first two days,
when no burnets were observed, are not estimable. An indication of this is
that their posterior distributions cover (almost) the entire range of their
prior distributions, that is, the 95% CRI essentially covers the range
from 0 to 1 for the probability parameters. This means that the data con-
tain no information about these parameters. The parameters describing
the dynamics of occupancy, survival (phi), colonization (gamma), and
the growth rate, may all offer interesting insights into the factors that
drive the population dynamics of a species in the context of occurrence.

Apart from the third day, when very few burnets were observed (and
during the first two, see above), detection probability appears to be
similar. Hence, we pool the detection parameters and fit a model with
constant detection probability. In addition, as an exercise we aggregate
the binary response over the two replicates per day and specify a
binomial(2, p) data distribution instead of a Bernoulli(p). When there
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is no modeled structure among replicate surveys, this model parameter-
ization is computationally more efficient than the one with a Bernoulli
response.

# Specify model in BUGS language
sink("Dynocc2.txt")
cat("
model {

# Specify priors
psi1 ~ dunif(0, 1)
for (k in 1:(nyear-1)){

phi[k] ~ dunif(0, 1)
gamma[k] ~ dunif(0, 1)
}

p ~ dunif(0, 1)

# Both models at once
for (i in 1:nsite){

z[i,1] ~ dbern(psi1) # State model 1: Initial state
for (k in 2:nyear){ # State model 2: State dynamics

muZ[i,k] <- z[i,k−1]*phi[k−1] + (1−z[i,k−1])*gamma[k−1]
z[i,k] ~ dbern(muZ[i,k])

# Observation model
muy[i,k] <- z[i,k]*p
y[i,k] ~ dbin(muy[i,k], 2)
} #k

} #i

# Derived parameters: Sample and population occupancy, growth
rate and turnover

psi[1] <- psi1
n.occ[1] <- sum(z[1:nsite,1])
for (k in 2:nyear){

psi[k] <- psi[k−1]*phi[k−1] + (1−psi[k−1])*gamma[k−1]
n.occ[k] <- sum(z[1:nsite,k])
growthr[k] <- psi[k]/psi[k−1]
turnover[k−1] <- (1 − psi[k−1]) * gamma[k−1]/psi[k]
}

}
",fill = TRUE)
sink()

# Aggregate detections over reps within a day and bundle data
yy <- apply(y, c(1, 3), sum, na.rm = TRUE)
win.data <- list(y = yy, nsite = dim(yy)[1], nyear = dim(yy)[2])

# Initial values
inits <- function(){list(z = apply(y, c(1, 3), max))}

# Parameters monitored
params <- c("psi", "phi", "gamma", "p", "n.occ", "growthr",

"turnover")
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# MCMC settings
ni <- 2500
nt <- 2
nb <- 500
nc <- 3

# Call WinBUGS from R (BRT 1 min)
out2 <- bugs(win.data, inits, params, "Dynocc2.txt", n.chains = nc,

n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory =
bugs.dir, working.directory = getwd())

# Summarize posteriors
print(out2, dig = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

psi[1] 0.461 0.394 0.003 0.058 0.387 0.902 0.997 1.122 21

[...]
psi[7] 0.093 0.032 0.040 0.070 0.090 0.114 0.165 1.002 1700

phi[1] 0.121 0.207 0.001 0.008 0.026 0.121 0.778 1.087 28

[...]
phi[6] 0.368 0.120 0.154 0.280 0.362 0.447 0.625 1.001 3000

gamma[1] 0.108 0.202 0.001 0.007 0.020 0.083 0.790 1.070 33

[...]
gamma[6] 0.017 0.017 0.000 0.005 0.012 0.024 0.063 1.001 3000

p 0.646 0.059 0.525 0.608 0.648 0.687 0.756 1.001 3000

n.occ[1] 43.739 38.086 0.000 5.000 36.000 87.000 95.000 1.176 16

[...]
n.occ[7] 7.241 1.301 6.000 6.000 7.000 8.000 10.000 1.001 3000

growthr[2] 0.742 4.958 0.004 0.021 0.060 0.327 5.190 1.096 26

[...]
growthr[7] 0.433 0.139 0.196 0.334 0.422 0.517 0.742 1.002 1900

turnover[1] 0.507 0.300 0.016 0.244 0.507 0.777 0.981 1.002 1400

[...]
turnover[6] 0.143 0.126 0.004 0.048 0.108 0.206 0.464 1.001 3000

We plot what we have learnt about the occupancy, or incidence, of
Swiss burnets over the season (Fig. 13.12).

DAY <- cbind(rep(1, out2$n.sims), rep(2, out2$n.sims), rep(3,
out2$n.sims), rep(4, out2$n.sims), rep(5, out2$n.sims), rep(6,
out2$n.sims), rep(7, out2$n.sims))

boxplot(out2$sims.list$psi ~ DAY, col = "gray", ylab = "Occupancy
probability", xlab = "Day of survey", las = 1, frame.plot = FALSE)

We see the typical unimodal phenology of an insect in temperate latitudes
(Kéry et al., 2009). Six-spot burnets are most widespread in Switzerland dur-
ing the period in which survey number 5 is made. Interestingly, although no
burnets were seen during either the first or the second day, the posterior
distribution for occupancy was quite different for the two days. There are
two reasons for this. First, the Markovian model propagates information
backwards in time and so occurrence at k = 2 (zi,2) is informed directly by
zi,3 because there are data at k= 3. Conversely, zi,1 gets no direct information
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at all from k= 2 because there were no observations (J.A. Royle, pers. comm.).
Second, different amounts of information are available for occupancy on the
two days. There were only 75 sites with surveys on the first, but 87 sites with
surveys on the second day. As a consequence, the occupancy parameter was
not estimable on the first day; the posterior samples simply reflected the prior.
In contrast, on the second day, occupancy was estimated at effectively zero.
You can compare the sample sizes for each day like the following:

apply(apply(y, c(1, 3), max), 2, function(x){sum(!is.na(x))})
[1] 75 87 95 95 95 95 87

In summary, the dynamic site-occupancy model is a powerful extension
to the classical metapopulation model. Depending on the definition of a site
and the state of occurrence, dynamic occupancy models can be used to
describe the dynamics of a vast array of systems. Covariates can be intro-
duced for all parameters via the usual GLM link functions. The main chal-
lenge when applying the model may be a data management and parameter
bookkeeping one: to put the data in the required multidimensional arrays
and not to get confused with multidimensional model code.

13.6 MULTISTATE OCCUPANCY MODELS

So far, we have been treating occurrence as a binary variable. However,
frequently we can distinguish different states of occurrence. Examples
include “single bird”, “nonreproductive pair”, and “reproductive pair”
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FIGURE 13.12 Occupancy probability of the burnet over a season: summary of posterior
distributions for survey day 1 through survey day 7. No burnets at all were seen during the
first two days.
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when studying territory occupancy, “breeding possible”, “breeding
probable”, or “breeding confirmed” in bird atlas studies (Schmid et al.,
1998), different population size classes in the monitoring of vocal amphi-
bians (Royle and Link, 2005), or “occupied by species A only”, “occupied
by species B only”, or “occupied by both species” in studies of species
interactions. Apart from detection uncertainty, there is an additional
potential component of uncertainty in these examples: state uncertainty,
that is, whether a site observed in one state truly is in that state. For exam-
ple, when species A is observed at a site, the true state of that site could
either be “occupied by species A only” or “occupied by both species”.

Themultistate site-occupancymodel is used for inference about multiple
states of occupancy in the presence of both state and detection uncertainty.
Thismodel seems to have been independently developed byRoyle andLink
(2005) andNichols et al. (2007), providing another example for the indepen-
dent and (more or less) simultaneous development of a model, such as the
Cormack-Jolly-Seber model (Cormack, 1964; Jolly, 1965; Seber, 1965), sin-
gle-state site-occupancy models (MacKenzie et al., 2002; Tyre et al., 2003),
and spatial capture–recapture models (Borchers and Efford, 2008; Royle
and Young, 2008). The explicit merging of site-occupancy models with
multistate models (Chapter 9) holds promise because the combination of
two already very general model classes likely results in even more flexible
models. It is likely that many ideas that are well understood and applied
in the multistate arena may be taken over to site-occupancy models
as well.

In the following, we focus on the simplest possible multistate occu-
pancy model, where two occurrence states along with the third state
“unoccupied” are distinguished in a closed population. The generaliza-
tion to more than two states is straightforward. We illustrate with data
from a survey of long-eared owls (Fig. 13.9), where either hooting adult
males or begging young are detected, or nothing at all. If a hooting male
is heard, we are unsure about whether reproduction is taking place at a
site. If we fail to hear anything, we are unsure about whether a site is
occupied at all as well as whether there is reproduction. In contrast,
when hearing begging young, there is no uncertainty about state and
occurrence.

The development of the model is nearly identical to that of the multi-
state model (Chapter 9). First, we need to define lists of true and of
observed states. The true states in our example are “not occupied”,
“occupied without reproduction”, and “occupied with reproduction”.
The list of observed states comprises “not seen”, “seen without repro-
duction”, and “seen with reproduction”. A hierarchical model for data
from this system distinguishes a description of the state and another of
the observation process. We therefore introduce the latent variable z,
which defines the true state of each site and can take values 1 (site not
occupied), 2 (site occupied without reproduction), or 3 (site occupied
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with reproduction). The probability of the state of site i is modeled using
a categorical distribution as

zi � categoricalðΩiÞ,
where Ωi is the state vector. The state vector has as many elements as
there are states and each element is the probability that site i is in a
given state. In our example, we have

Ωi =
1−ψ1,i −ψ2,i

ψ1,i
ψ2,i

2
4

3
5,

where ψ1,i is the probability that site i is occupied without reproduction,
ψ2,i is the probability that site i is occupied and reproduction takes place,
and 1 − ψ1,i − ψ2,i is the probability that site i is unoccupied. Obviously,
the three probabilities need to sum to 1, and we often assume that the
probabilities are the same at all sites (no index i).

Given the true state zi of site i, the observation process links the true
state with the observations (yi,j). We write

yi,j jzi � categoricalðΘzi ,1:::O,i,jÞ,
where Θ is the observation array and O is the number of observed states.
The array has four dimensions; the last two refer to site (i) and survey ( j).
If detection is assumed to be the same at all sites and constant among
surveys, the observation array becomes a two-dimensional matrix. The
first dimension refers to the true state and the second to the observed
states. The elements of the matrix are the probabilities of an observation
given a state. Assuming constancy over sites and surveys, the most
general observation matrix Θ is

not seen without seen with
seen rep: rep:

not occupied

occupied without reproduction

occupied with reproduction

π1,1

π2,1

π3,1

π1,2

π2,2

π3,2

π1,3

π2,3

π3,3

2
64

3
75
:

The true states are in the rows and the observed states in the columns.
Thus, πm,k denotes the probability of classifying a site in state m as being
in state k. These probabilities are either detection or genuine classification
probabilities or both. Clearly, the probabilities of correct classification are
in the diagonal, while the off-diagonals contain the probabilities of incor-
rect classification. The matrix is row-stochastic, so the three probabilities in
the same row are not independent; rather, they sum to one.
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This matrix defines the most general multistate model that could be
fitted in a site-occupancy context. Given sufficient data, all parameters
should be estimable. However, frequently, there is a natural order in the
modeled states and some errors are unlikely or impossible. Typically, it
can be assumed that classification errors only occur in one direction, so
that a “higher” state can be erroneously taken to be a lower state, but
not the other way round. For instance, a site with reproduction could be
classified as having no reproduction if only an adult is heard hooting and
no begging young are heard, but not the other way round. The result of
this is that we model a restricted version of the fully general observation
matrix (now we also make explicit the relationships among cell probabil-
ities within a row):

not seen without seen with
seen rep: rep:

not occupied

occupied without reproduction

occupied with reproduction

1

1− π2,2

1− π3,2 − π3,3

0

π2,2

π3,2

0

0

π3,3

2
64

3
75

Both Royle and Link (2005) and Nichols et al. (2007) describe restricted
models of this kind, where a site in state 1 (unoccupied) can only be
observed in state 1 (we assume there are no false positives), but sites in
state 2 can be observed in state 1 or 2 and sites in state 3 in all three states
(1, 2, or 3).

This model can be re-expressed in various parameterizations. What this
means is that the elements of the state vector and the elements πm,k in the
observation matrix can be rewritten as functions of other parameters that
may be more interesting biologically or that may allow a more natural
formulation of covariate effects; see Royle and Link (2005) and Nichols
et al. (2007). Our parameterization in this chapter is as follows:

State vector Observation matrix
1−ψ

ψð1− rÞ
ψr

2
64

3
75

1 0 0

1− p2 p2 0

p3,1 p3,2 p3,3

2
64

3
75

Here, ψ is the probability of occupancy, regardless of reproduction, and r
is the probability that reproduction takes place at an occupied site. In the
observation matrix, p2 is the detection probability of a site without repro-
duction, p3,3 is the probability that at a site with reproduction, the species
is detected and reproduction is observed (i.e., the state is correctly classi-
fied), p3,2 is the probability that at a site with reproduction, the species is
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detected but reproduction is not observed (i.e., the state is misclassified),
and p3,1 is the probability that the species is not detected at a site with
reproduction. The three probabilities, p3,k, must sum to one, and this is
accounted for by our choice of a Dirichlet prior in the BUGS model
description; see below.

To illustrate this model, we use data on territory occupancy of the long-
eared owl (Fig. 13.9) from a long-term population study of our colleague
Simon Birrer at the Swiss Ornithological Institute. Birrer has been survey-
ing 40 owl territories repeatedly in every breeding season since 1989. Not
all sites were checked in every year and we chose the data from 2009,
when 31 sites were checked up to 5 times. We read in the data and briefly
look at them.

owls <- read.table("owls.txt", header = TRUE)
str(owls)

The variables entitled obs1-obs5 denote the result of each survey: detec-
tion of no owl at all (0), of a hooting owl (1) or of begging young (2). The
variables entitled date1-date5 give the Julian date of each survey. To fit
the model, we must relabel the states because WinBUGS does not allow
indices of 0. Hence, we denote the states in the same way as defined
above. This relabeling is done in the data bundle statement below.

We specify the model with default vague priors for all parameters. The
beta terms are used to specify a vague Dirichlet prior for the multinomial
distribution represented by row three in the observation matrix above (see
also Section 9.6). Our model could accommodate time variation in the
observation matrix, but at first we will assume constancy of parameters
over time.

# Specify model in BUGS language
sink("model1.txt")
cat("
model {

# Priors
p2 ~ dunif(0, 1)
psi ~ dunif(0, 1)
r ~ dunif(0, 1)
for (i in 1:3) {

beta[i] ~ dgamma(1, 1) # Induce Dirichlet prior
p3[i] <- beta[i]/sum(beta[])
}

# Define state vector
for (s in 1:R){

phi[s,1] <- 1 − psi # Prob. of nonoccupation
phi[s,2] <- psi * (1 − r) # Prob. of occupancy without repro
phi[s,3] <- psi * r # Prob. of occupancy and repro
}
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# Define observation matrix
# Order of indices: true state, time, observed state
for (t in 1:T){

p[1,t,1] <- 1
p[1,t,2] <- 0
p[1,t,3] <- 0
p[2,t,1] <- 1−p2
p[2,t,2] <- p2
p[2,t,3] <- 0
p[3,t,1] <- p3[1]
p[3,t,2] <- p3[2]
p[3,t,3] <- p3[3]
}

# State-space likelihood
# State equation: model of true states (z)
for (s in 1:R){

z[s] ~ dcat(phi[s,])
}

# Observation equation
for (s in 1:R){

for (t in 1:T){
y[s,t] ~ dcat(p[z[s],t,])
} #t

} #s

# Derived quantities
for (s in 1:R){

occ1[s] <- equals(z[s], 1)
occ2[s] <- equals(z[s], 2)
occ3[s] <- equals(z[s], 3)
}

n.occ[1] <- sum(occ1[]) # Sites in state 1
n.occ[2] <- sum(occ2[]) # Sites in state 2
n.occ[3] <- sum(occ3[]) # Sites in state 3
}
",fill=TRUE)
sink()

We analyze rows 2–6 in the owls data frame and convert them to a
matrix called y.

# Bundle data
y <- as.matrix(owls[, 2:6])
y <- y + 1
win.data <- list(y = y, R = dim(Y)[1], T = dim(Y)[2])

# Initial values
zst <- apply(y, 1, max, na.rm = TRUE)
zst[zst == "-Inf"] <- 1
inits <- function(){list(z = zst)}

# Parameters monitored
params <- c("p2", "p3", "r", "psi", "n.occ") # Might want to add "z"
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# MCMC settings
ni <- 2500
nt <- 2
nb <- 500
nc <- 3

# Call WinBUGS from R (BRT <1 min)
out1 <- bugs(win.data, inits, params, "model1.txt", n.chains = nc,

n.thin = nt, n.iter = ni, n.burnin = nb, debug =TRUE, bugs.directory =
bugs.dir, working.directory = getwd())

# Summarize posteriors
print(out1, dig = 2)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
p2 0.35 0.19 0.04 0.21 0.33 0.46 0.82 1.00 2400
p3[1] 0.55 0.12 0.30 0.47 0.56 0.64 0.77 1.00 3000
p3[2] 0.21 0.09 0.05 0.14 0.20 0.26 0.40 1.00 530
p3[3] 0.24 0.12 0.07 0.16 0.22 0.31 0.51 1.00 550
r 0.64 0.21 0.24 0.48 0.64 0.81 0.98 1.01 350
psi 0.52 0.15 0.28 0.42 0.50 0.61 0.86 1.00 1900
n.occ[1] 19.11 5.39 5.00 16.00 20.00 23.00 27.00 1.00 1100
n.occ[2] 7.51 5.46 0.00 3.00 7.00 10.00 21.03 1.01 260
n.occ[3] 13.38 5.10 6.00 10.00 13.00 16.00 25.00 1.00 600

We estimate that 52% of sites are occupied, of which 64% by reproduc-
tive owls. For our specific sample of 40 sites, this translates into an esti-
mated 13.4 occupied sites with and 7.5 sites without reproduction and 19.1
unoccupied sites. Detection probability of a site without reproduction is
estimated at 0.35 and for a site with reproduction at 0.24. There is a prob-
ability of 0.21 to detect only hooting adults at a site with reproduction and
one of 0.55 to miss it altogether. The parameters describing state uncer-
tainty and detection error all refer to a single survey.

This model assumes that all parameters are constant, but the surveys take
place over an extended time period (early March–early September), so this
assumption may be unlikely. For instance, begging young will not be avail-
able over the entire period. Therefore, a more realistic model may be one that
allows for these parameters to vary by occasion (i.e., survey 1–5).

# Specify model in BUGS language
sink("model2.txt")
cat("
model {

# Priors
psi ~ dunif(0, 1)
r ~ dunif(0,1 )

for (t in 1:T){
p2[t] ~ dunif(0, 1)
for (i in 1:3) {

beta[i,t] ~ dgamma(1, 1) # Induce Dirichlet prior
p3[i,t] <- beta[i,t]/sum(beta[,t])
} #i

} #t
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# Define state vector
for (s in 1:R){

phi[s,1] <- 1 − psi # Prob. of nonoccupation
phi[s,2] <- psi * (1 − r) # Prob. of occupancy without repro.
phi[s,3] <- psi * r # Prob. of occupancy and repro.
}

# Define observation matrix
# Order of indices: true state, time, observed state
for (t in 1:T){

p[1,t,1] <- 1
p[1,t,2] <- 0
p[1,t,3] <- 0
p[2,t,1] <- 1−p2[t]
p[2,t,2] <- p2[t]
p[2,t,3] <- 0
p[3,t,1] <- p3[1,t]
p[3,t,2] <- p3[2,t]
p[3,t,3] <- p3[3,t]
}

# State-space likelihood
# State equation: model of true states (z)
for (s in 1:R){

z[s] ~ dcat(phi[s,])
}

# Observation equation
for (s in 1:R){

for (t in 1:T){
y[s,t] ~ dcat(p[z[s],t,])
} #t

} #s

# Derived quantities
for (s in 1:R){

occ1[s] <- equals(z[s], 1)
occ2[s] <- equals(z[s], 2)
occ3[s] <- equals(z[s], 3)
}

n.occ[1] <- sum(occ1[]) # Sites in state 1
n.occ[2] <- sum(occ2[]) # Sites in state 2
n.occ[3] <- sum(occ3[]) # Sites in state 3
}
",fill=TRUE)
sink()

We recycle the remaining “ingredients” for the call to bugs() below.

# Call WinBUGS from R (BRT 1 min)
out2 <- bugs(win.data, inits, params, "model2.txt", n.chains = nc,

n.thin = nt, n.iter = ni, n.burnin = nb, debug =TRUE, bugs.directory =
bugs.dir, working.directory = getwd())
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# Summarize posteriors
print(out2, dig = 2)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
p2[1] 0.76 0.19 0.32 0.65 0.80 0.92 0.99 1.01 440
p2[2] 0.57 0.21 0.17 0.41 0.57 0.72 0.94 1.00 3000
p2[3] 0.16 0.16 0.00 0.05 0.12 0.23 0.58 1.00 1600
p2[4] 0.34 0.20 0.04 0.19 0.32 0.47 0.78 1.01 670
p2[5] 0.27 0.21 0.01 0.09 0.22 0.39 0.78 1.00 3000
p3[1,1] 0.53 0.17 0.20 0.40 0.53 0.65 0.84 1.00 1300
p3[1,2] 0.33 0.17 0.06 0.20 0.32 0.44 0.68 1.00 3000
p3[1,3] 0.41 0.19 0.08 0.26 0.40 0.55 0.80 1.00 3000
p3[1,4] 0.53 0.22 0.11 0.36 0.54 0.70 0.91 1.00 3000
p3[1,5] 0.37 0.25 0.02 0.16 0.34 0.55 0.87 1.00 3000
p3[2,1] 0.37 0.16 0.09 0.25 0.36 0.48 0.70 1.00 3000
p3[2,2] 0.14 0.12 0.00 0.04 0.10 0.19 0.44 1.00 1300
p3[2,3] 0.15 0.13 0.00 0.04 0.11 0.21 0.48 1.00 1000
p3[2,4] 0.24 0.19 0.01 0.09 0.20 0.36 0.69 1.00 3000
p3[2,5] 0.31 0.23 0.01 0.11 0.27 0.47 0.82 1.00 2000
p3[3,1] 0.10 0.09 0.00 0.03 0.08 0.14 0.35 1.00 3000
p3[3,2] 0.54 0.18 0.20 0.41 0.54 0.67 0.86 1.00 2000
p3[3,3] 0.45 0.19 0.11 0.30 0.44 0.58 0.82 1.01 600
p3[3,4] 0.23 0.19 0.01 0.08 0.19 0.33 0.69 1.00 3000
p3[3,5] 0.32 0.23 0.01 0.13 0.28 0.48 0.83 1.00 3000
r 0.58 0.17 0.27 0.47 0.59 0.70 0.91 1.00 3000
psi 0.40 0.10 0.22 0.33 0.40 0.47 0.62 1.00 3000
n.occ[1] 24.13 2.94 17.00 22.00 25.00 26.00 29.00 1.00 1100
n.occ[2] 6.33 2.48 1.00 5.00 6.00 8.00 11.03 1.00 3000
n.occ[3] 9.54 2.90 5.00 7.00 9.00 11.00 16.00 1.00 1900

Many parameters are estimated with little precision, but we see that
occupancy (psi) and the conditional (on occupancy) probability of suc-
cessful reproduction (r) are estimated at higher values under model 2
than under model 1. We could also specify a model with covariate effects
(Julian date in our data set) on these time-dependent parameters, but leave
this for the exercises.

The multistate occupancy model can be extended in two important
ways. First, the generalization to more than two occupancy states is
straightforward. Second, a dynamic multistate occupancy model has
been developed recently (MacKenzie et al., 2009). Similar to the multistate
models of Chapter 9, these models estimate state transition probabilities.
Technically, the state transition is an element of the state equation and can
be included in WinBUGS by using a categorical distribution. The para-
meters of the state transition matrix may then be, for example, the prob-
ability that a site with reproduction in year t is abandoned in year t + 1, or
the probability that a site without reproduction in year t produces young
in year t + 1. Dynamic multistate occupancy models are conceptually
analogous to multievent models (Pradel, 2005).
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13.7 SUMMARY AND OUTLOOK

We have introduced site-occupancy models, a class of hierarchical
logistic regression model for occurrence data that jointly estimate detec-
tion probability to account for imperfect detection. Occurrence may be a
proxy for the local metapopulation abundance, which is the focus of inter-
est in the binomial mixture model of the previous chapter. Alternatively,
occupancy may be the focus of interest such as in species distribution
models, disease ecology, or metapopulation ecology. When detection of
occupied sites (patches) is not perfect, the extent of occurrence of species
will be underestimated and covariate relationships will be estimated with
bias, regardless of whether there are patterns in detection probability or
whether it is constant. Given suitable data (occurrence observations that
are replicated in both space and time within a short period), occupancy
probability can be estimated separately from detection probability, and
covariate relationships with either parameter can be estimated, even
when the same covariate is affecting both occurrence and detection.
Knowing typical values of detection probability and how the latter varies
with measurable covariates can be invaluable for the planning of surveys.

We have furthermore illustrated a dynamic, multiseason version of a
site-occupancy model (MacKenzie et al., 2003; Royle and Kéry, 2007),
which is precisely a generalization of a classical metapopulation model
for incidence, colonization, and extinction probability that accounts for
imperfect detection; imperfect detection biases virtually all parameter esti-
mates in classical metapopulation models unless corrected for. Static and
especially dynamic site-occupancy models have increasingly been used to
correct for variation in effort over long time scales when studying changes
in species distributions from historic data (Altwegg et al., 2008; Moritz
et al., 2008; Tingley and Beissinger, 2009; Tingley et al., 2009; Kéry et al.,
2010b; van Strien et al., 2011). We have also illustrated another important
generalization, the multistate site-occupancy model (Royle and Link, 2005;
Nichols et al., 2007). These models allow one to simultaneously deal with
detection error and state uncertainty and thus considerably extend the
range of possible applications of this model class. For instance, Miller
et al. (2011) use multistate occupancy models to deal with false-negative
(detection) and false-positive (misclassification) errors in occupancy data.

Further extensions of the basic model include Royle and Nichols (2003),
who describe a heterogeneity site-occupancy model that allows one, under
certain conditions, to estimate the mean abundance at a collection of sites
from detection/nondetection data alone (see also Dorazio (2007); Conroy
et al. (2008) for a Bayesian implementation). In an exciting new develop-
ment, Bled et al. (2011b) describe complex, spatially explicit, dynamic
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occupancy model for the spread of invasive species. Roth and Amrhein
(2009) have developed a site-occupancy model to estimate local survival
and recruitment from territory occupancy data with unmarked animals.
Dorazio and Royle (2005) have described a multispecies site-occupancy
model that enables one, among other things, to estimate species richness
for each site (i.e., community size) as well as for the collection of sites (i.e.,
metacommunity size). The Bayesian implementation of this model using
data augmentation (Dorazio et al., 2006) has been very seminal for com-
munity studies; see series of papers by Kéry and Royle (2008, 2009),
Russell et al. (2009), Zipkin et al. (2009, 2010), and Ruiz-Gutiérrez and
Zipkin (2011). This model has been extended to open population by
Kéry et al. (2009; not including dynamics) and Dorazio et al. (2010; includ-
ing occurrence dynamics); Yamaura et al. (2011) developed a version of the
open multispecies site-occupancy model with the Royle-Nichols (2003) for-
mulation of detection heterogeneity. In addition, MacKenzie et al. (2009)
developed a multistate, dynamic occupancy model, which appears to be a
very general and unifying model—most other occupancy models can be
described as special cases of this overarching model. In summary, site-
occupancy models represent an extremely powerful and flexible class of
models for inference about populations of animals and plants.

13.8 EXERCISES

1. In the blue bug example, fit a “behavioral response” effect, that is, fit a
separate detection probability dependent on whether the species has
been detected ever before at a site or not. Hint, you can use the
following R code to generate the “seen-before” covariate matrix. How
do you interpret the results? Would you use the behavioral response
model for inference about the system behind the blue bug data set?
Discuss.

# Generate a 'seen-before' covariate

sb <- array(NA, dim = dim(y))

for (i in 1:27){

for (j in 1:6){

sb[i,j] <- max(y[i, 1:(j−1)])

}

}

sb[is.na(y)] <- 0 # Impute 'irrelevant' zeroes

2. In the dynamic occupancy model of Section 13.5.1, ignore the detection
process and aggregate the temporal within-day replicates. Adapt the
WinBUGS code to fit a conventional metapopulation model and see
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how the estimated quantities are biased; see also Ruiz-Gutiérrez and
Zipkin (2011).

3. Fit a multiseason, nondynamic version of the site-occupancy model
to the burnet data. That is, treat days as a group and model
occupancy independent between successive days (similar to how
we modeled abundance in Section 12.3). In this way, you commit
some pseudoreplication, but treating days as a group allows you to
model occupancy as a function of temporally varying covariates.

4. Site-occupancy models represent the only currently available species
distribution modeling framework that can estimate true, rather than
apparent distributions (Kéry et al., 2010a; Kéry, 2011b). However,
modeling occurrence and observation jointly can be difficult in
marginal data situations. Devise a simulation study, where you vary
the number of sites, occupancy, and detection probability as well as the
number of replicate visits per site to see that in small-data situations,
occupancy estimates will be biased high, and sometimes severely so.
Do so in a model with constant detection and occurrence probability.
Hint: this is a somewhat larger project.

5. In the multistate occupancy model, add an effect of Julian date on
detection probability of hooting adults and begging young, that is, p2,
p3,2 and p3,3. Do not forget to standardize the covariate.
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